其他
打造轻量级实时数仓实践
Flink 和 ClickHouse 分别是实时计算和(近实时)OLAP 领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台、实时数仓,效果很好。关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数仓方面的一点实践经验。
点击流及其维度建模
点击流数仓分层设计
DIM 层:维度层,MySQL 镜像库,存储所有维度数据。 ODS 层:贴源层,原始数据由 Flume 直接进入 Kafka 的对应 topic。 DWD 层:明细层,通过 Flink 将 Kafka 中数据进行必要的 ETL 与实时维度 join 操作,形成规范的明细数据,并写回 Kafka 以便下游与其他业务使用。再通过 Flink 将明细数据分别写入 ClickHouse 和 Hive 打成大宽表,前者作为查询与分析的核心,后者作为备份和数据质量保证(对数、补数等)。 DWS 层:服务层,部分指标通过 Flink 实时汇总至 Redis,供大屏类业务使用。更多的指标则通过 ClickHouse 物化视图等机制周期性汇总,形成报表与页面热力图。特别地,部分明细数据也在此层开放,方便高级 BI 人员进行漏斗、留存、用户路径等灵活的 ad-hoc 查询,这些也是 ClickHouse 远超过其他 OLAP 引擎的强大之处。
要点与注意事项
Flink 实时维度关联
使用异步 MySQL 客户端,如 Vert.x MySQL Client。 AsyncFunction 内添加内存缓存(如 Guava Cache、Caffeine 等),并设定合理的缓存驱逐机制,避免频繁请求 MySQL 库。 实时维度关联仅适用于缓慢变化维度,如地理位置信息、商品及分类信息等。快速变化维度(如用户信息)则不太适合打进宽表,我们采用 MySQL 表引擎将快变维度表直接映射到 ClickHouse 中,而 ClickHouse 支持异构查询,也能够支撑规模较小的维表 join 场景。未来则考虑使用 MaterializedMySQL 引擎(当前仍未正式发布)将部分维度表通过 binlog 镜像到 ClickHouse。
Flink-ClickHouse Sink 设计
写入本地表,而非分布式表,老生常谈了。 按数据批次大小以及批次间隔两个条件控制写入频率,在 part merge 压力和数据实时性两方面取得平衡。目前我们采用 10000 条的批次大小与 15 秒的间隔,只要满足其一则触发写入。 BalancedClickhouseDataSource 通过随机路由保证了各 ClickHouse 实例的负载均衡,但是只是通过周期性 ping 来探活,并屏蔽掉当前不能访问的实例,而没有故障转移——亦即一旦试图写入已经失败的节点,就会丢失数据。为此我们设计了重试机制,重试次数和间隔均可配置,如果当重试机会耗尽后仍然无法成功写入,就将该批次数据转存至配置好的路径下,并报警要求及时检查与回填。
ClickHouse 数据重平衡
The End
作者:LittleMagic
原文:jianshu.com/p/bedead165403